DRAFT

ASP-Il for EADSM Conceptual Model Specification
2.0 CONCEPTUAL MODEL SPECIFICATION

2.0.1 OPERATIONAL CONCEPT

EADSIM is an analytic model of air and missile warfare used for scenarios ranging from
few-on-few to many-on-many. Itisuniquein that each platform (such as afighter aircraft)
isindividually modeled, asisthe interaction among the platforms. 1t models the command
and control (C2) decision processes and the communications among the platforms on a
message-by-message basis. Intelligence gathering is explicitly modeled and the
intelligence information used in both offensive and defensive operations.

2.0.2 TOP-LEVEL SOFTWARE DESIGN

EADSIM consists of four processeswhich runin parallel and exchange dataand commands
required for their coordination. The processes:

. Command, Control, Communications and Intelligence (C3l)

. Flight Processing

. Detection

. Propagation
contain al or portions of the various functionalities designated in the SMART Functional
Area Template (FAT), e.g., the Sensor element of the FAT has control logic to direct
sensors and determine their status in the C3I process while Signal to Noise Ratio
computations are performed and detections are determined in the Detection process. The
C3lI process performs Command and Control (C2) decision modeling, message processing,
track processing, and engagement and weapon modeling for all platforms in a scenario.
The state of aplatform’s C2 logic determines what computations are performed and what
actions are modeled in the other three processes. The Flight Processing process maintains
and updates the movement and status of each platform in response to commands and
information received from C3l. The Detection process models each sensor in the scenario
and determines, based on information provided by C3I, whether asensor isactive and when
it can detect a given target. The Propagation process (Prop) models communications
connectivity which determines whether messages can be successfully transferred between
two nodes in a network.

EADSIM can be run in various configurations consisting of combinations of the four
processes. Figure 2.0-1 shows the possible combinations that can be used. Notice that
Flight Processing is aways required and that it is the only process that can be run by itself.
The most commonly used configuration is the one assuming perfect connectivity.

Processes Run Uses

FP DET | PROP | Ca3lI

. . . . e Full Combat Analysis

. . . « Perfect Connectivity

. * Flight Paths Only

. . « Non-reactive Case Detections

. . * Non-reactive Case Connectivity

. . e Tactical Missile Launches, Bomber Engagements

FIGURE 2.0-1. EADSIM Runtime Configurations.

Update: 12/31/97 2.0-1 EADSM

DRAFT

DRAFT

Conceptual Model Specification ASP-Il for EADSIM

Process Logic Flow

EADSIM isboth an event driven and atime stepped simulation. The C3l processis event
driven, i.e., uses an event calendar, while the other three processes are time stepped. The
time step, called the simulation interval, can be specified by the user as an integer number
of seconds or has a default value of 3 seconds. Each of the time stepped processes is
controlled by a main program which, after a series of initialization steps enters into a
processing loop that updates its scenario time, reads incoming messages from the other
processes, performsitslocal processing and constructs and sends outgoing messages to the
other processes. The processing loop terminates when its simulation time exceeds the end
of the scenario.

Figure 2.0-2 diagrams how messages are exchanged among the processes to maintain the
proper sequence of execution between them. The key to understanding the diagram is the
fact that the communications sockets are blocking sockets, i.e., a process trying to read a
socket must wait there until all the datain the message it isreading has arrived. Thisisthe
mechanism by which the required sequencing between processes is maintained. The top
line of processing in the figure, labeled FP, represents the main processing loop for Flight
Processing. The second line, represents the processing performed by C3l process, and the
remaining two lines represent the main processing loops for the Detection and the
Propagation processes, respectively.

{ ; SUBSEQUENT TIME STEP
1

=
FP UPDATE » SEND » MOVE ALL >
@ STATES TRUTH TO NEXT
c | SEND
—3‘ SENDS AND] @ CONTROI @ @ @ C3I EVENTS —>
COMMANDS DATA THROUGH NEXT
DETECT EVALUATE
AND) »-» DETEC- SEND AND, B
TIONS SPDS
PROP COMPUTE SEND
AND) —> connec: (| connec- AND, -
TVITY TVITY

FIGURE 2.0-2. Execution Sequencing between Processes.

C3l sends the engagement commands, generated from the previous simulation interval, to
the FP process which updates the state vectors of the platformsin the scenario, and usesthe
C3I commands to update the status of the platforms. The updated states and status
information are then sent to the other three processes.

When C3lI receives the updated platform data from FP, it sends sensor control information
to Detection and jammer control information to both Detection and Propagation. Detection

EADSM 2.0-2 Update: 12/31/97

DRAFT

DRAFT

ASP-Il for EADSM Conceptual Model Specification

uses the platform states and status data in generating detections for the current simulation
interval. The detections are placed in an array named the Sensor Periodic Detection
Summary (SPDS). When all the detections for the current interval have been generated,
the SPDS is sent to C3l. Propagation uses the C3I commands and the platform states and
status from FP to determine network connectivities. The connectivities are sent to C3l,
which uses the detections to perform track processing. The connectivity information
determines whether a message can be received at its destination. Each of the time stepped
processes advance their ssimulation clocks to the next simulation interval at the bottom of
their processing loop and wait at the socket read for incoming messages. C3l advances its
clock each timean event istaken from the calendar. After the interprocess communications
(1/C) event is pulled from the calendar and the I/C function, C3I Data Transfer, is called
C3lI synchronizes with the other processes for the next simulation interval.

C3I Process Logic

Four major functions or functional classes comprise the description of the C3I process
logic:

the Simulation Executive

C3lI Initialization

the generic processing performed in each ruleset
the C3l Interprocess data transfer function.

The description follows Figures 2.0-3 through 2.0-7. Each figureis alogic flow diagram
with numbered blocks that serve as keys in the discussion of the diagram.

The Simulation Executive

Figure 2.0-3 isaflow diagram of that part of the simulation executive which placesthe C3lI
functionsinto execution. The simulation executive consists of a set of scheduling utilities
that schedule events on the event calendar and an Execute utility that retrieves each event
from the calendar. Events can be scripted during scenario generation to occur at specified
times or they can be scheduled in the course of processing other events. Each event
contains a pointer to a function. The function performs the processing required to model
the event. The Execute utility invokes the function when it retrieves the event. Thiscan be
thought of as a“ruleset engine” that allows the state of a ruleset to change in response to
developing conditions as the scenario unfolds.

Update: 12/31/97 2.0-3 EADSM

DRAFT

DRAFT

Conceptual Model Specification ASP-Il for EADSIM

CSimuIation Executiv}

Call C3i Initialization | 1.

'y

LOOP Until

ScenarioEnd /

Get Next Event
from the Calendar

'

Call Function specified
in the Event Record

Y

FIGURE 2.0-3. EADSIM Simulation Executive.

Block 1. The executive cals the initialization function, C3lI Init, to read the scenario file
and construct the runtime database of platforms, rulesets, sensors and jammers. When
theseinitialization steps are complete, thefirst rulesets to be executed have been scheduled
on the simulation calendar along with periodically executing utilities, such as C3I Data
Transfer. The initialization function returns to the simulation executive.

Block 2. The simulation executive entersinto a processing |oop which continuesto execute
for the duration of the scenario.

Blocks 3. and 4. The simulation executive retrieves the next event to be executed from the
calendar and extracts the pointer to the function that should be executed. The call to
C3IDataTransfer is the first event placed on the simulation calendar in the simulation
interval. Thisfirst call sets up the sockets with the other processes and provides theinitial
messages required to start C3l. The details of the data transfer function are discussed
below. Subsequent call to this function are always scheduled to occur at the beginning of
the next smulation interval. The remaining events on the calendar for this simulation
interval are calls to ruleset phases that have been scheduled during the execution of
previous events.

EADSM 2.0-4 Update: 12/31/97

DRAFT

DRAFT

ASP-Il for EADSM Conceptual Model Specification

C3l Initialization Logic

The C3l initialization function, C3ilnit, initializes the scenario data base and schedules
events for the first scenario interval, as well as scripted TBM launches for their specific
times. The steps performed by the initialization routine are shown in Figure 2.0-4.

C C3l Initialization)

Read the scenario Schedule the first
file data ruleset phases

v y

Initialize the inter-

process communications Schedule the interprocess
communications for C3l
+ 2
+ 7.
Initialize the scenario,))]
sSensors, p|atforms and Schedule intersimulatoin
jammers protocols

+ 3. 8.
Initialize the rulesets

+ 4,

Initialize the first

detection commands
for sensors

FIGURE 2.0-4. C3I Process Initialization.

Block 1. The scenario file to be executed isread from disk in preparation for initializing the
C3lI platform data structures.

Block 2. The sockets between C3l and the other processes are initialized to establish
communications with the other processes.

Block 3. The C3I data structures for all of the smulation objects, e.g., the scenario,
platforms, sensors, weapon Py tables and jammers, are initialized from the scenario data
base.

Block 4. The rulesets phases are assigned to platforms as determined from the scenario data
base.

Update: 12/31/97 2.0-5 EADSM

DRAFT

DRAFT

Conceptual Model Specification ASP-Il for EADSIM

Block 5. The initial commands for controlling platform sensors are constructed from the
scenario data base and placed in the interprocess communications queue for Detection.

Block 6. Thefirst ruleset phasesto be executed for the platforms are placed on the calendar
in time order.

Block 7. The C3l data transfer function is placed on the calendar as the first event. This
order of events assures that the data transfers between C3l and the other processes occur in
the sequence necessary to maintain the proper timing relationships between the processes.

Block 8. 1f EADSIM iscommunicating with other ssimulationsviaDIS or AL SP, the update
function(s) for the specified protocol is scheduled on the calendar for execution.

C3I Interprocess Communications L ogic

Figure 2.0-5 isalogic flow diagram of C3I Data Transfer which consists of a sequence of
teststo determineif any external simulations are communicating with EADSIM and which
of the other three processes are running in the current EADSIM configuration. Each read
at asocket interface will block the C3I process until the expected data arrives and has been
retrieved.

EADSM 2.0-6 Update: 12/31/97

DRAFT

DRAFT

Conceptual Model Specification

ASP-1I for EADSM

RUOTIE LU

o seanoadian] €3 €-0°T TANDH

dd

wouij mw_*h@MWNwwO

|leAlalul uoly wis 1xau
ay) 10} J|9S §INPayds

d4 01 spueWWOD

P~
JTUgtioUE U9 JUTS

s1odeayd491um

QC_n_ Ol Spuetuwrod
Jawwel puasg

S110dogd0Ida1lIM

101109197 01 eleD

|0J1U0d I0SUSS puas

1odayI0SuasallIM

la|melg DV.L

o
UISoueESSdll PUogs

suoday1sanoallip

60| _mo;m 1S 10}
mhmt:p indipo ysn|4q

Buruuni

Sl 94& dl
Buluuny

sI co:%«oo |

TBTMeEIg DVI
yim G&uuni 4

dd 01 sarepdn

Ehotm_qﬁm:m puas

Hodegrsenoage M

19)008

TSEIPe0Iq SIa ouT
woJ} snad pesy

uoITeIaPaJu0D aY) WO}

S HBAPR-SHHIISaRbaM
AZa) o4 Nl £ 20 g (=]

la|melg DVL

wol} sebessaw 189

sabessapisano g peay

mc_:ciw_ dd 4l

Jajsueilereqed

Block 1. If TAC Brawler is running in confederation with EADSIM, the call to

ReadTBGuestM essage passes incoming messages to C3l.

Block 2. If EADSIM is running with an ALSP confederation, a Request Time Advance

message is sent out to coordinate EADSIM’ s time advance with the other simulations.
EADSIM is forced to wait here until the other simulations in the confederation have

advanced their time to or past EADSIM’ s requested time.

EADSM

207
DRAFT

Update: 12/31/97

DRAFT

Conceptual Model Specification ASP-Il for EADSIM

Block 3. If EADSIM is running with a DIS confederation (other than TAC Brawler),
incoming messages are read from the DIS broadcast socket and the cal to
WriteFPGuestReports sends guest platform update messages to Flight Processing (guest
platforms are platforms that are represented in EADSIM but are updated by another
simulation).

Block 4. If Flight Processing isrunning (it's always required), commands from C3I to FP,
generated in the previous simulation interval, are sent by the call to WriteFPReports. The
following call to ReadTruth reads platform states, updated to the current simulation
interval, and status information from FP and placesit in the appropriate C3l platform data
structure specified in each message.

Block 5. If EADSIM isrunning in confederation with TAC Brawler, messages generated
in the current simulation interval are transmitted to TAC Brawler by the cal to
WriteGuestReports.

Block 6. If the Detection processis part of the current configuration, WriteSensorReports
is called to send it sensor commands for the current interval. ReadSPDS reads the
detections for the interval. ReadSPDS uses a C language function pointer in the platform
data structure to call a‘plug in’ function that reads the detection summary for the current
simulation interval and performsthe ruleset’ strack processing. Thisfunction isassigned to
the ruleset during initialization. It uses the detection information to update the platform
track files specified by each message and can purge atrack to accommodate one of higher
quality when the track file has no room for more tracks.

Block 7. If Propagation is running, the (receiver) jammer commands C3l has generated are
sent for processing by calling WritePropReports. The call to GetCommunications reads
network connectivity results computed by Propagation and places them in the designated
network data structures.

Block 8. After dataisreceived from the Propagation process, the output buffersfor logging
statistics are flushed.

Block 9. C3IDataTransfer reschedules itself to execute at the start of the next interval.

The executive now proceeds to call all events that have been scheduled for the interval.
This process of scheduling C3IDataTransfer and subsequent calls to scheduled rulesets
continues until the scenario ends.

Ruleset Execution

Figure 2.0-6 is a conceptual representation of the processing performed in aruleset. The
sequence of processing shown in the figure does not correspond closely to the actual
processing in aruleset; for example, aphase may be scheduled anywherein agiven ruleset.
Typically, it is one of the last operations in a processing path. The figure also shows how
information from the other processes is stored and accessed by the components of C3l. In
addition to the data transfer function which comprises one component, rulesets can be
divided into three more components: Track Processing, Message Processing and BM/C3
processing. The Message Processing component consists of a transmit function, which is
referenced implicitly in Block 2, and the receive message processing function that
processes messages sent out over a communications network.

EADSM 2.0-8 Update: 12/31/97

DRAFT

DRAFT

Conceptual Model Specification

ASP-1I for EADSM

Dhn e Heledicn

>:_>:owc:av

YJ0MISN
spegtteo—

Jawwer

s1003
uonosalaq

OTCT

9|NPIMIS9Y

FWISEINOL] 198N 90T TN

anand ul aoe|d
® S9SS9201d Jaylo
10} sabessa arelauan

/SS920.d dolid 01
SPURWULOD DWWREL pLAS — —

uol193lag wou}

lo0suas

sHetded SgdsPeed
/uonno@ag o3

S10303 g

alels anil

wva&&oo

Spuewiwio) puas

dd woJjereq yinilL
parepdn pesy

anand abessa
Aond wiope|d

uonebedold

dd

7= J\» L

sobesgo |
dsv/sida

i

sofessa|\ >

dsTv/sid

sabessaw
|020101d BuloBinQ a11up

L(
L
rm
Vm

anand
abessa| Josuas

anand abessa
Buissasoid 1ybi4

OlUl snieis

A

sobessa
02010.1d Bulwoou| pes

Jajsuellereq|ed

—P>

T

asSkld 19Sa|ny lualin
—

[eAlalu] 1ualind

a
SHI O OtHSSS90+d

yoell wiopiad

Tste Ty s troiretd
1ay3o 10} IMBessap

SUONEdIUNWWoD
ue spuewwo) 31eIausn)

10Ss9201d BSI\ A,09Y

A

19S3|NY 1XaN 3|NPayds

i
anand } aoeid

1 S9SS920.d Jaylo
10J safessa|\ a1elauan

salld
3oell wioje|d

Detection socket. For each track file active tracks are updated. Low priority tracks are
deleted from saturated track files to make room for new, higher priority tracks. When a
platform’strack fileis empty and it receives anew track, phase 1 (e.g., Target Select) of its

ruleset is scheduled for execution after atrack establishment delay.

Block 1. Track Processing isperformed at the time detection reports are retrieved from the

EADSM

2.0-9
DRAFT

Update: 12/31/97

DRAFT

Conceptual Model Specification ASP-Il for EADSIM

Block 2. The current ruleset phase of a platform uses information in the platform’s track
file and the updated platform states (for the current platform, its targets and its
subordinates) to control sensor status, determine platform movement and maneuvers, to
control communications networks, etc. Commands to control subordinates and messages
reporting status to commanders and peers are generated and placed in the transmission
queue for the appropriate network links. The receive message processor is scheduled to
distribute the messages to destination platformsif it is not already running.

Block 3. Messages for the other processes are generated to relay engagement decisionsto
the other processes and are placed in the FP, Detection and Propagation output buffers for
transmission over their respective sockets.

Block 4. The next ruleset phase for the current platform is schedul ed.

Flight Process Logic

Flight ProcesslogicisshowninFigure 2.0-7. The processistime stepped and synchronizes

with the other processes through blocking sockets that communicate in the manner
described for C3|DataTransfer.

EADSM 2.0-10 Update: 12/31/97

DRAFT

DRAFT

ASP-Il for EADSM Conceptual Model Specification
— I
= =
©
= S {y
3 8P
B T £
=g c b
N —-{
b s0
T + -
c 26
0] St =
%) —
o S
o L
=)
© o] =
™ © T & =
8§ 3 T b a=d
ol =50 =25 g
T —-0 — - =
= bl & - 7
-oq—l) e} © o
c c O -
o @ R !
n 0 et
=
i 1]
=
© M~ I--
[N) TR b =
d c 9 it |
B = 4 2 g 033 L
D 9 2 E L
s © 8 2F So SQE ==
=
o F E3 3s 5E 2§ S)
oP < 4 — I = e — = =
= % 38 EK =R T
o o = ol - o - E- =)
o n g - £) G @
g = s
7 S ki
s [« %

Inn‘*llvn
Flight Processing

Exit

Block 1. The scenario random number seed is initialized, the current Monte Carlo run
number is updated and the number of Monte Carlo runs to be made is initialized. The
scenario file is opened and the scenario database is used to initialize the FP data structures.
The FP sockets for interprocess communications are initialized. The data structuresfor the
Tactical Balistic Missiles in the scenario are initialized. The list of weapons for each
platform is built, waypoints lists are built and platform flight data structures are built. The
graphics output file is initialized with static header information to allow state vector and
status information to be logged in condensed form for playback.

Update: 12/31/97 2.0-11 EADSM

DRAFT

DRAFT

Conceptual Model Specification ASP-Il for EADSIM

Block 2. If the option has been selected, scripted TBMs are ‘preflown’ to compute the
launch parameter values that will result in the prescribed tragjectories, impact points and
impact times.

Block 3. TBM launches can be optionally performed in a separate processif dynamically
determined launches are required in a scenario. This block terminates FP initialization.

Block 4. The FP process remains in thisloop until the end of the scenario.

Block 5. The FP process simulation clock isincremented to the current smulation interval
prior to any processing in the interval.

Block 6. All active platforms and Tactical Ballistic Missiles (TBMs) are moved forward
to the current interval. The specific movement algorithm used to move a platform is
determined by the current mode of movement of the platform.

Block 7.1f EADSIM isrunninginaDISor AL SP confederation, platform update messages
are read and used to update those platforms owned by other simulations in the
confederation and represented in EADSIM. FPwill remain blocked here until the expected
information arrives.

Block 8. Commands and status information from C3l are read and used to determine which
platforms are to be moved in the next simulation interval, what maneuvers are to be
calculated, the mode of movement for each platform, the type of platform, etc. FP will
remain blocked here until the expected information arrives.

Block 9. The true state vector and status information for each platform computed in Block
6 issent to C3l whereit will beused in engagement processing and to generate commands
for the next ssimulation interval.

Block 10. Thetrue state vector and status information for each platform computed in Block
6 is sent to Detection to generate detections for the current simulation interval.

Block 11. Thetrue state vector and status information for each platform computed in Block
6 issent to Propagation whereit is used in determining network connectivity for the current
simulation interval.

Block 12. The true state vector and status information for each platform computed in
Block 6 iswritten to the graphicsfile for playback processing.

Control now moves to the top of the loop, through Blocks 5 and 6 and stops at Block 7 or
8 to wait for messages in the next ssmulation interval.

Detection Process Logic

Detection Process logic is shown in Figure 2.0-8. The process is time stepped and
synchronizes with the other processes through the same type of blocking sockets described
in section 2.1.1. The Detection process accepts commands from C3l and state vectors from
FP to generate detections for sensorsin the scenario each ssimulation interval. Detection’s
flow of control is similar to that for FP in that it has an initialization step that precedes a
processing loop. Once the processing loop is entered, it continues to be executed until the
end of the scenario.

EADSM 2.0-12 Update: 12/31/97

DRAFT

DRAFT

ASP-Il for EADSM Conceptual Model Specification

11.

~
4
3>
035
@ STE
IS 9,’::
£ ¢ T g%
= c q Q F O
=t nFc
o 3 0 9o
g% 9 D5<
gti S g
o ads
o) (@ INC
i
=
. 2dj
© = =1 =
]
b L o
’ o 7
" E h 2 (=
o] 2c P 2} 5
£ 4 g &+ = = £
IS 9 ¢35 ap M b 8 —
£ e ffﬂuj oy, O %*_,‘L’ g =
= RS F = =
© 05 = o =
LL - D o h
- -
b h = @
I @
[
o
|
X
L
) < [T} © ;_.I
5]
2 = o |
L: 5 2 E 3 4 £,
S £a X £G = =
IS 0 = bc 0w E_ —
5@ = E = = & r=
5 2 O S FT = [!
o —=t S —PE 5 —a—5 O =
== = - n m —_—
c Eva 5 B9 D pEe
© - o ¢ © o2
I o = m P> D b=
o OF o = ET c [
; 5 ©= & Po o o
ha = ruw - X2 D]
N
1%
g oY
= =g
<
g =90
. = T =
+3 c <
v Og9o
q o
d -}
[a

Block 1. InitDet reads scenario data from the scenario data base, initializes the Detection
interprocess communications sockets, the interface with the ALARM radar clutter and
multipath models, sensor data structures and the Detection random number seed. It
initializes the weapons and jammer data structures for each platform and the sensors for
each platform.

Block 2. Thisisthetop of the scenario processing loop for the detection process. Detection
executes this loop for the duration of the scenario.

Block 3. The Detection simulation clock is advanced to the current simulation interval .

Update: 12/31/97 2.0-13 EADSM

DRAFT

DRAFT

Conceptual Model Specification ASP-Il for EADSIM

Block 4. Updated true state vectors and status information for each platform are read from
the FP/Detection socket for the ssmulation interval. The processwill wait here until all the
expected data has arrived at the socket.

Block 5. SetBodyMatrix computes the transformation matrix to convert vectorsfrom Earth
Centered Inertial (ECI) coordinates to platform or missile body coordinates. The matrix is
stored for later computations.

Block 6. Sensor commands from C3I for the current interval are read from the socket and
the geometry, status and mode of each sensor on each platform in the scenario are updated.
Sensor target lists are updated. The process will wait here until all the expected data has
arrived at the socket.

Block 7. If the scenario contains jammers, the pointing angles are updated and converted
from ECI to platform body coordinates according to commands received from C3l.
Jammer status is also updated.

Block 8. Detect checks all the sensors on each platform in the scenario to determine those
that can scan for targets. For each such sensor it determines which targets are detected and
places the detection reportsin a Sensor Periodic Detection Summary (SPDS) data structure.
All the detections for the current simulation interval are calculated in this call to Detect.

Block 9. The SPDS data generated in Block 8. is sent over the Detection to C3l socket to
Ca3l.

Block 10. Detection information islogged for post-processing.
Block 11. The SPDS queue is emptied.
Propagation Process Logic

Propagation isthe third of the EADSIM time-stepped processes. It usestrue platform state
vectors and status information from FP and commands from C3l to determine the
connectivity status of network links for each simulation interval. Figure 2.0-9 is alogical
flow diagram of the main program for the Propagation process. It consists of initialization
steps followed by a processing loop that lasts for the duration of the scenario.

EADSM 2.0-14 Update: 12/31/97

DRAFT

DRAFT

ASP-Il for EADSM Conceptual Model Specification
o
2 |, 8 o
2 |ef o
|5} =0 x ©
s [OR Sire 1)
c SEp2 <
c r =
o E><G—J'
o SE c e
= =
< o P ©
o &) = L
E b -
5] 5]
z .
=
Sl
) exd
< 5 =] i
h =
5 £3 2 g 3 z
= E v [E 3 3 =
k] £S5 S e ;5 I
ER 2¢9 8 895 p O =
Ed |t o | #1053 E o =
o A LL L =) —
[o ¢$ P © =
[} by e | 3 D+«]
= o E = [=1j
g °9f o E [@J PO ;
o o g S EY D 2
= 14 h =
I o
—)
Lal]
("5 EU r'i
c g]
@ o =
9. X § P
225 - — 12
o > an]
od®° O d i
s S g
o4

connectivity data
to C3lI

Initialize data structs
PutConr*ctivity
Write initial

Block 1. Proplnit initializes the scenario data structures for the Propagation process and
initializes the interprocess communications sockets with the other processes. It initializes
the antenna locations and determines the antenna height for each network node.

Block 2. Theinitial connectivity datafor all network linksin the scenario is sent to C3l.

Update: 12/31/97 2.0-15 EADSM

DRAFT

DRAFT

Conceptual Model Specification ASP-Il for EADSIM

Block 3. The processing loop for Propagation executes for the duration of the scenario.
Block 4. The Propagation simulation clock is updated to the current simulation interval.

Block 5. The updated true state vectors from FP are read from the FP to Propagation socket.
This information is used to update the position of each communications node that has
moved inthelast interval. The antennaaltitudes are updated for communications nodes and
jammers as are the heading and pitch angles for airborne antennas.

Block 6. Jammer commands from C3I are used to change the status of jammers and update
jammer power. The on/off times for jammers is updated

Block 7. Loop over all the networks in the scenario.

Block 8. NetworkConnectivity performs connectivity analysis for each communications
path of the given network. Paths are either connected or not.

Block 9. If the last path in the network to be updated just been processed, then control exits
the processing loop. To enhance the execution speed, the links updated in asingle interval
can be specified as a percentage of the total.

Block 10. The connectivity information for the scenario networks in the current simulation
interval is sent to C3l

Block 11. At the end of the current run the process gracefully shuts down.
Data Flow through the Major Components

EADSIM is comprised of three components: a preprocessing step, the runtime software,
and a postprocessing step. The largest part of the preprocessing step is Scenario
Generation, a graphical user interface through which the user defines the components and
the layout of the scenario, as well as the initial sequence of events that start the scenario.
The collected information is stored in a set of scenario files as shown in Figure 2.0-10
which are read by the runtime software and used to generate the scenario results. The
results are recorded in the course of runtime software execution and stored in a set of data
collection files which are read by the post processors to create analysis reports to the user
and by the playback processor to generate an animated display of the scenario unfolding.

EADSM 2.0-16 Update: 12/31/97

DRAFT

DRAFT

ASP-Il for EADSM Conceptual Model Specification

C3I/DECISION
PROCESS

SCENARIO
GENERATION

WINDOW-BASED
POST-PROCESSING

SCENARIO
EXECUTION

SCENARIO
PLAYBACK

REPORT
GENERATION

OFF-LINE
ANALYSIS TOOLS

MAP DATA y y

MANAGEMENT

DETECT PROP

y
FLIGHT
PROC.

TECHNICAL PROCESSES

Scenario
Files

Runtime
Results

FIGURE 2.0-10. EADSIM Data Flow.

The scenario files contain information that characterizes the components that make up the
scenario: the laydown files, platforms that comprise the laydowns, the systems that define
the platforms and the elements that comprise the systems. Figure 2.0-11 illustrates the
makeup of the scenario data. The datain a scenario is organized in a hierarchical fashion,
with each level of the hierarchy building on the lower levels. The elementsform the lowest
level of the hierarchy:

Airframes Protocols

Sensors Radar Cross Section (RCYS)
Rulesets InFrared Signature (IR)
Communication Devices Probability of Kill Tables (PK)
Jammers Formation

Weapons Flyout Table (FOT)

Combinations of elements are used to build Systems. Systems are deployed as Platforms.
Groupings of Platforms are organized into Laydowns. The Platformsinthe Laydownsare
interconnected with Networks. The Networks also use the Protocol elements. Areas of
Interest (AOIs) can be created and associated with both Platforms and Networks. The Map
specification forms the geographic basisfor the scenario. The Scenario combinesall of the
lower level data.

Update: 12/31/97 2.0-17 EADSM

DRAFT

DRAFT

Conceptual Model Specification ASP-Il for EADSIM

Each of these groupings of datais combined into files and directories. The element datais
contained in a single directory, referenced as an element data path in the scenario. Each
laydown isin a separate laydown file. Each grouping of networksisin a network file, and
AOIlsarein AQI files. The map specificationisinamap fileand isitself a specification of
lower level data. LLTRs, Preferences, Display Colors and Routes, Transmittance and
Radiance are likewise contained in separate files. Finally each scenario is contained in a
scenariofile.

SCENARIO GENERATION DATA HIERARCHY

A HIERARCHY OF DATA ORGANIZES AND EXPEDITES THE
SPECIFICATION OF A SCENARIO

—
v
ENVIRON-
! SCENARIOS MENT
MAP
+ SCENARIOS ARE THEN
A FURTHER COMBINATION —
OF LOWER LEVEL DATA AREAS OF
INTEREST
v
ROUTES
v
+ SYSTEMS ARE DEPLOYED
NETWORKS
ELEMENT DATA
« ELEMENTS [[
COMBINE TO PROTO-
MAKE SYSTEM coLs
ELEMENTS WEAPONS ——
o | ZE% AIRFRAME
S —— Dy
SENSORS | 1cons
« INDIVIDUAL S S B
COMPONENTS ARE FLYOUT JAMMERS | R
SPECIFIED AS TABLES \
ELEMENTS PP TABLES FOR- COMM | INFRARED
MATIONS DEVICES |[SIGNATURE
- B ~ N
v

FIGURE 2.0-11. Scenario Database.

At each level of hierarchy (Figure 2.0-11) afile contains either direct references to pieces
of the lower level files or path namesto the lower level files. Thisfeature of the input files
facilitates a great deal of flexibility in scenario design and analyses. Major pieces of the
data base can be ‘ mixed and matched’ to form variants on scenarios without rebuilding the
entire scenario. Also, each level can be used in multiple scenarios. Thus, once areliable
element database has been constructed, it can be reused in multiple scenarios. Different
combinations of laydowns, networks, and maps can also be made. The contents of specific
portions of the scenario file are read at the initialization of each of the four processes to
assign initial valuesto the internal data structures of each process.

EADSM 2.0-18 Update: 12/31/97

DRAFT

DRAFT

ASP-Il for EADSM Conceptual Model Specification

Theinternal data flow between processesis shown in Figure 2.0-12.

TECHNICAL PROCESSES C3I/DECISION PROCESSES
PERIODIC DETECTIONS
GROUND TRUTH DETECTION *
——
PROCESS COMMANDS

C3I PROCESS

FLIGHT
PROCESSING COMMANDS AND STATUS
> AIRCRAFT
> SSM GROUND TRUTH

1
> GROUND
> SATELLITE

| PROPAGATION
GROUND TRUTH PROCESS

COMMANDS

|

PERIODIC CONNECTIVITY

FIGURE 2.0-12. Runtime Process Data Flow.

Dataistransferred between the processes in the form of messages transmitted over sockets.
Sockets are specia file descriptors that allow two processes residing on the same or
different computers to communicate. Flight Processing sendsthe updated state vector for
the active platformsin a scenario to Detection, Propagation and C3I. The Detection process
passes detections to C3| every simulation interval in the form of a SPD Summary.
Similarly, Propagation sends periodic connectivity reports to C3l. C3l sends commands
and status information to Flight Processing. It sends commands to Detection that govern
how sensors are used and to Propagation to control communications devices.

The output files contain logging information collected at runtime that is used by a post-
processor to generate analysis reports and to drive the playback processor. The playback
processor provides an animated display of the scenario asit was executed at runtime.

Source Code Hierarchy

Figures 2.0-13 through 2.0-16 are source code hierarchy charts for the four EADSIM
runtime processes, C3lI, Flight Processing, Detection and Propagation, respectively.

C3Il Process

The calling tree for C3l is shown at the top of Figure 2.0-13 and consists of the call to the
initialization function, C3llinit and a call, via function pointer, to the next function
scheduled for execution on the simulation event calendar. The lists headed by ‘*’ in the
remainder of the figure contain functions that can be scheduled. Thisis not an exhaustive
list; rather, it emphasizes the areas of interest for purposes of planned SMART analyses.
The functions listed in the calling tree are implementations of the phases for the four
rulesets, Flex SAM, Flex Commander, AG Attacker and Ground Attack Commander. A
brief description of each function follows.

Update: 12/31/97 2.0-19 EADSM

DRAFT

DRAFT

ASP-1I for EADSM

Conceptual Model Specification

23 [, BUl[ED S52000] [€0

10 HEN

ng -

ZE3SUOY
J3INP3aYIS ay} wolj paxpAuUl suonol
QTaskydar 69SeUday
29seUday
¢raseydudxd
69SeUdNY [3SEUdOV
QASP UMY gTaseydor 99SeUdNY
A3SRUY graseudar gaseyday
gaseydaebuziny
gaseldys 7oSeqdoy
9aseydabebuIIY £T8SRUdPWONIRNY
N3
Toseydwdxd T8seydNvsd FoSEHdOV
. 1oSeudpwdxoeny
Zouul |_
suohound queN
Um_zvm_tm : ._c

9QAIINJ9X]

uone|nwis

ANEINIThIS

SUOIBIIUNWWO0DIBD

s1odaydoidailim

Sadspray]

110daY10SUSSIIM

suoday1sanoallp

Uinilpeoy

suodayd481Im

Hodayisanod4a1im

sabessayisan

pdlpesay

Lm,_mcmiao_mo

Xx

Simulation Executive: The executive calls the C3l initiaization function, performs

calendar scheduling and places scheduled functions in execution.

It

Reads the scenario database and initializes the C3l runtime data structures.
generates the first detection commands for the sensors and schedules the initial events on

the ssimulation calendar.

C3lInit:

Update: 12/31/97

2.0-20

DRAFT

EADSM

DRAFT

ASP-Il for EADSM Conceptual Model Specification

InitC2: Assigns runtime functions to the rulesets.

C3lDataTransfer: Runs at the beginning in each simulation interval and retrieves
messages from the other processesthat are required by C3l to perform its processing for the
interval. Sends messages to control the other processes. Reschedules itself after
completing data transfers for the current interval.

ReadTBGuestM essages: Reads DIS messages from TAC Brawler.
WriteFPGuestM essages. Sends Brawler messages to Flight Processing.

WriteFPReports. Sends engagement commands to Flight processing, e.g. determines
maneuvers to be executed by a platform.

ReadTruth: Reads state vectors and status information for each platform sent from the FP
process. The information has been updated by FP to be valid in the current simulation
interval.

WriteGuestReports: Sends C2 information and state datato TAC Brawler.

WriteSensor Report: Sends sensor control and status messages for the current interval to
the Detection process.

ReadSPDS: Reads detection reports from the Detection process for the current interval.
C3I uses the information to update track files for each platform.

WritePropReports: Sends commands to update jammer information and dynamically
establish new networks.

GetCommunications: Reads messages from the Propagation process and uses the
information to determine whether network communications can occur.

SchNext: Schedulesacall to C3IDataTransfer at the start of the next interval.
The AGAttacker ruleset phases are:

AGPhasel: Target select phase for the air-to-ground attacker ruleset. Executes for
wingman for scripted targets and commanded targets from the flight leader. Executes for
flight leaders for scripted, detected and commanded targets.

AGPhase4: Lock phase for the air-to-ground attacker ruleset. Executes until the
platform's weapons are within launch range.

AGPhase5: AGAttacker launch phase. Executes once and schedules the intercept at
weapon impact.

AGPhase6: Intercept phase for the air-to-ground attacker performskill assessment on the
target at intercept time.

Update: 12/31/97 2.0-21 EADSM

DRAFT

DRAFT

Conceptual Model Specification ASP-Il for EADSIM

AGPhase7: React to air-to-air engagement for the air-to-ground attacker. Executes when
an AG Attacker isunder attack and the attacker (fighter) isin engage mode. Determinesthe
AG Attacker’ s reaction.

AGPhase8: AG Attacker reacts to lock by air attacker when the attacker has locked a
weapon on the air-to-ground attacker.

AGPhase9: Air-to-ground attacker drag phase. Scheduled when adecision isreached that
the AGAttacker should execute a drag maneuver.

AGPhasel2: AGAttacker reactsto SAM lock. The SAM platform schedules AGPhasel2
when it locks on the AGAttacker platform, providing that the SAM has a Radar sensor.

JCPhasel6: Allocates jammers on a target platform (e.g. AG Attacker) to jam a threat
radar. This function executes periodically.

The Ground Attack Commander ruleset phases are:

AttackCmdPhasel: Performs the target select phase for the Ground Attacker
Commander.

AttackCmdPhasel3: Performsthe vector update for a Ground Attacker Commander, i.e.,
a commanded AG Attacker is informed that a commanded intercept point has been
changed.

JCPhasel6: Allocates jammers on a target platform (e.g. AG Attacker) to jam a threat
radar. This function executes periodicaly.

The Flexible SAM ruleset phases are:

FSAMPhasel: Performs target selection and weapons assignment for flexible SAM
platforms.

SAPhase5: Executes at the time of launch for a ground based weapon system. If the
launch has not been canceled, it will begin the engagement and schedule a call to the
intercept routine at intercept time. Otherwise it will return without doing anything.

JCPhasel6: Allocates jammers on a target platform (e.g. AG Attacker) to jam a threat
radar. This function executes periodically.

CMPhasel7: Countermeasures phase, currently used for Flexible SAMs and Flexible
Commandersto call atrigger evaluation function that determinesif circumstances indicate
areaction. Calls aresponse routine to execute the reaction.

The Flexible Commander ruleset phases are:

FxCmPhasel: Target select phase for a Flexible Commander. This phase contains the
logic that assigns both air and ground based assetsto targets. These assetsinclude fighters,
SAM systems and DEW systems. The Flex Commander can be assigned to an airborne or
aground based platform.

EADSM 2.0-22 Update: 12/31/97

DRAFT

DRAFT

ASP-Il for EADSM Conceptual Model Specification

AirEngagePhase6: Executes at the intercept time for a ground or air based weapon
system. If the intercept has not been canceled, it will determine if the intercept was
successful and perform the status operations. Otherwise it will return without doing
anything.

ARPhase7: Executes when a subordinate tanker is under attack and the attacking system
Is in engage mode. Schedules SCRAM drag maneuver for himself. Since the Flex
Commander reactions to attack are similar to those of the Air Refueling (AR) Tanker, the
ruleset uses the AR phases 7, 8 and 9 for this purpose.

ARPhase8: Executes when an air borne commander is under attack and the attacking
system has locked a weapon. Schedules the SCRAM drag maneuver for himself.

ARPhase9: Reaction routine is scheduled when a platform should execute a drag
maneuver. Assumed to be called once the maneuver has begun to determine when it will
complete.

FXxCMPhasel2: ExecuteswhenaSAM platform locks on an airborne flexible commander
The SAM platform initially schedules FxCmPhasel2 (providing that the SAM has a Radar
sensor)

JCPhasel6: Allocates jammers on a target platform (e.g. AG Attacker) to jam a SAM
platform radar. Thisfunction executes periodically.

Flight Processing Process:

The calling tree for the FP process is shown in Figure 2.0-14. The functions performed in
the FP process can be grouped into Initialization, TBM Launch, Platform Update, Missile
Update and I nterprocess Communications. Thetwo update functionsdiffer in that platform
updates affect different parameters than do missiles. A brief description of each function
follows.

Update: 12/31/97 2.0-23 EADSM

DRAFT

DRAFT

ASP-Il for EADSM

Conceptual Model Specification

UINILaIIM
b4
UITILId
IO
ynipdoidind
nvsedwisAi4
16934
YouneTNgL ST
_M\JHDD
SSIMIDAE
au|eresAld OUNETNLIEIS
salejsuwliolie|d
1sengieo a|issiferepdn soe4doprepdn younpsnes

dduu]

|
)

Update: 12/31/97

2.0-24
DRAFT

EADSM

DRAFT

ASP-Il for EADSM Conceptual Model Specification

InitFP: Readsthe scenario datafor flight processing and initializes the FP data structures.
It also establishes interprocess communications with the other processes.

Savel aunch: Prefliesthe scripted TBMsin the scenario and saves the launch parameters
for use during TBM flyout.

StartM Launch: Spawnsaseparate processthat isresponsiblefor finding launch solutions
for missiles that are launched dynamicallyi.e. in response to an event or command during
scenario execution.

UpdateOpFacs. Updates the position and status of a platform for the current time step.
Moves airborne, surface, and missile Platforms.

FlySatellite: Propagates the position and velocity of an object along a ballistic drag free
elliptical, hyperbolic or parabolic trgjectory using an F& G series integrator.

OrientSat: Orientsthe body of a satellite with respect to its velocity vector.

FlySmpleSAM: Performs 3 D.O.F. and Constant Velocity SAM flyouts. Models the
guided flight of a homing missile from launch to time of target closest approach.

OrientAir: Orients the body frame of an airborne platform with respect to its velocity
vector.

Flight: Calls the function that performs calculations for a specified flight mode, e.g.,
waypoint mode, scramble, return to base, wingman, etc.

UpdateMissile: When the scheduled launch time for a missile occurs, UpdateMissile
performs the launch cal culations and continues to periodically update its state until impact
occurs or the missileiskilled.

FlyCruise: Updates the state of a cruise missile between waypoints and maintains the
missile’ s position within an altitude corridor or at a constant altitude above the ground.

TBMLaunch: Iterates on pitch angle or pitch rate to converge on a trajectory that will
achieve the desired ground range and then initializesa TBM for launch.

GetGuestPlatformStates. Used by Flight Processing to retrieve the states of platforms
owned by external simulations from the socket connection between FP and C3l.

GetC3l: This function receives engagement commands from the C3 mode that is part of
this simulation run. It unpacks data from a buffer and then sets the flight processing mode
and system state as indicated by the buffer contents.

PutC3l: Sendsupdated truth states and status information to the C3l process. Called every
simulation interval.

PutPropTruth: Transmits the truth data from Flight Processing to Propagation.
PutTruth: Transmits the truth datafrom flight processing to sensor detection.

WriteTruth: Used by flight processing to send the truth data to a graphics display file.
Dataislogged only when a system is active or has been recently killed.

Detection Process

The Detection process calling tree is shown in Figure 2.0-15. Functional groupings are:
Initialization, Interprocess Communications and functions which perform the detection
computations. A brief description of each of the functions shown in the calling tree follows.

Update: 12/31/97 2.0-25 EADSM

DRAFT

DRAFT

ASP-1I for EADSM

Conceptual Model Specification

a0] Iuljje) Fussaont] Uondnxg €107 FAN0I

+B+SaH
S1e1SSS920.d
rrohrsS
an®sadsabind
161 B
FLFETE SUdSSITW
HDFLOWCGWH_N_ 101 JUTWITIH >Uasitliia
101NN 2B ooy wunuee
oM AAM B trepex LR £
1b] losuas
sSnje1SIosuss
1991ed
ISELIEN R Sk

110

Update: 12/31/97

2.0-26

DRAFT

EADSM

DRAFT

ASP-Il for EADSM Conceptual Model Specification

InitDet: Usesdataretrieved from the scenario fileto initialize the detection data structures
and ancillary functions, e.g. selected ALARM subroutines used to support clutter and
multipath calculations.

GetTruth: Used by sensor detection to retrieve truth states and status information sent
from Flight Processing.

Sensor Status:. Uses sensor commands from C3I to update sensors in preparation for
generating the detections for the current interval.

Jamlnit: Sets up jammer pointing angles and transforms coordinates from ENU to the
jammer reference frame.

PutSPDS: Sends sensor detections for the current simulation interval to the C3I process.
WriteSPDS: Logs detections for the current interval to the Detection data collection file.

PurgeSPDSQue: Clearsthe Sensor Periodic Detection Summary output buffer (queue) at
the end of each ssimulation interval.

ProcessStats:. Computes and logs Detection process statistics each 60 seconds of
simulation time. These include CPU and memory usage.

Detect: Updates the status of each sensor in response to commands from C3l. Turns
sensors on or off in the presence of jammers and ARMs, adjusts sensor point angles in
preparation for computing detections

SensorTgt: Determines the type of sensor to model and calls the appropriate detection
function. Serves as the gateway to the detection algorithms.

RadarTgt: Generates radar detections. Detection calculations are determined by user
inputs and can include deterministic/probabilistic detections, clutter, multipath and
diffraction, simple sensor, compound sensor, radar resource management, etc.

HumintTgt: Loops through all pertinent sublists to determine which target systems the
human intelligence sensor can detect.

ImintTgt: loops through all pertinent systems to determine which target systems the
specified image intelligence sensor can view

SigintTgt: Models asignal intelligence sensor. Thistype of sensor detects targets based
on the type and frequency of active radio emitters on the target system.

ILDSTgt: This module loops through all launched missiles to determine if the specified
infrared launch detector sensor can view which of the missiles.

RWRTgt: Loopsthrough alist of systemsto determine which of itsscripted target systems
the specified radar warning receiver can view.

RFSensorTgt: loops through all pertinent systems, checking the on/off times, to
determine which of the target systems the input passive RF sensor can view.

IRTgt: loops through al pertinent sublists to determine which target systems the input
infrared sensor can view.

Propagation Process

The Propagation process calling tree, shown in Figure 2.0-16, consists of an initialization
function, functions for interprocess communications, jammer status updates and
connectivity computations. A brief description of each of the functions shown in the
calling tree follows.

Update: 12/31/97 2.0-27 EADSM

DRAFT

DRAFT

Conceptual Model Specification ASP-Il for EADSIM
7]
1]
(@]
—
[-
[&] —
I D
o E
0] H=
a 3
> d —
=] | L
<= m
o= o
=
) [en
e
z (@]
O
[
=
=
=
E
@] L
= =
q -
Z —
a Y =
o) E =
8 d =
N S '5.
Q C‘ ‘=8
£ z
e o
©
[aw) T
p o
i
1L
> - 2
S = =
= 2 2 ot
9] = 8 i
c 8 (g-
c
@] o e
% o o
z o
]
=
O
S
Q]

Proplnit: Readsthe scenario file and initializes the propagation data structures.

PutConnectivity: Used by propagation to transmit the connectivity matrix to C3l. The
matrix shows which of the defined network links in the scenario have connectivity in the
current scenario interval. Matrix values are O, for no connectivity, or 1, if connected.

EADSM 2.0-28 Update: 12/31/97

DRAFT

DRAFT

ASP-Il for EADSM Conceptual Model Specification

PropGetTruth: Retrieves platform truth states and status information sent from Flight
Processing.

PropStatus. Used by propagation to write the connectivity stats to the stats file.

Jammer Status: Changes jammer status in response to commands from the C3I process.
Changes include turning the jammer on and off, dynamically allocating jammers, etc.

DynamicNetwork: Allocates memory for the explicit network of adynamically allocated
platform.

Networ kConnectivity: Performs connectivity analysis for each communications path of
the specified network.

RFLoss. Determines whether the link between two network nodes has unobstructed line
of sight. If so, it uses free space loss calculations to determine connectivity. Otherwise it
uses the TIREM modd to make the determination.

FreeSpacel oss. Computes the free space lossin db.

TIREM: Determines connectivity in the presence of obstructions in the line of sight
between two nodes.

Update: 12/31/97 2.0-29 EADSM

DRAFT

DRAFT

Conceptual Model Specification ASP-Il for EADSIM

EADSM 2.0-30 Update: 12/31/97

DRAFT

